Lipschitz continuity and the termination of interval methods for global optimization
نویسندگان
چکیده
منابع مشابه
New interval methods for constrained global optimization
Interval analysis is a powerful tool which allows to design branch-and-bound algorithms able to solve many global optimization problems. In this paper we present new adaptive multisection rules which enable the algorithm to choose the proper multisection type depending on simple heuristic decision rules. Moreover, for the selection of the next box to be subdivided, we investigate new criteria. ...
متن کاملBranching and bounding improvements for global optimization algorithms with Lipschitz continuity properties
We present improvements to branch and bound techniques for globally optimizing functions with Lipschitz continuity properties by developing novel bounding procedures and parallelisation strategies. The bounding procedures involve nonconvex quadratic or cubic lower bounds on the objective and use estimates of the spectrum of the Hessian or derivative tensor, respectively. As the nonconvex lower ...
متن کاملGlobal optimization of Lipschitz functions
The goal of the paper is to design sequential strategies which lead to efficient optimization of an unknown function under the only assumption that it has a finite Lipschitz constant. We first identify sufficient conditions for the consistency of generic sequential algorithms and formulate the expected minimax rate for their performance. We introduce and analyze a first algorithm called LIPO wh...
متن کاملGlobal Lipschitz continuity for minima of degenerate problems
We consider the problem of minimizing the Lagrangian ∫ [F (∇u)+f u] among functions on Ω ⊂ R with given boundary datum φ. We prove Lipschitz regularity up to the boundary for solutions of this problem, provided Ω is convex and φ satisfies the bounded slope condition. The convex function F is required to satisfy a qualified form of uniform convexity only outside a ball and no growth assumptions ...
متن کاملLipschitz continuity of the solutions to team optimization problems revisited
Sufficient conditions for the existence and Lipschitz continuity of optimal strategies for static team optimization problems are studied. Revised statements and proofs of some results in “Kim K.H., Roush F.W., Team Theory. Ellis Horwood Limited Publishers, Chichester, UK, 1987” are presented. Keywords—Statistical information structure, team utility function, value of a team, Lipschitz continuity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2001
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(01)00219-x